项目作者: hjwdzh

项目描述 :
MeshODE: A Robust and Scalable Framework for Mesh Deformation
高级语言: C++
项目地址: git://github.com/hjwdzh/MeshODE.git
创建时间: 2020-02-24T04:38:46Z
项目社区:https://github.com/hjwdzh/MeshODE

开源协议:

下载


MeshODE: A Robust and Scalable Framework for Mesh Deformation

Pairwise shape deformation.

Plane Fitting Results

Dependencies

  1. libIGL
  2. CGAL
  3. Ceres
  4. pytorch

Installing prerequisites

  1. # recursively clone all 3rd party submodules
  2. bash get_submodules.sh
  3. # install python requirements
  4. pip install -r requirements.txt
  5. # install CERES (For Ubuntu)
  6. sudo apt-get install cmake
  7. sudo apt-get install libgoogle-glog-dev
  8. sudo apt-get install libatlas-base-dev
  9. sudo apt-get install libeigen3-dev
  10. sudo apt-get install libsuitesparse-dev
  11. sudo add-apt-repository ppa:bzindovic/suitesparse-bugfix-1319687
  12. sudo apt-get update
  13. sudo apt-get install libsuitesparse-dev
  14. mkdir 3rd_party/ceres-solver/ceres-bin
  15. cd 3rd_party/ceres-solver/ceres-bin
  16. cmake -DEXPORT_BUILD_DIR=ON ..
  17. make -j4
  18. make test
  19. sudo make install
  20. # install CERES (for Mac, Homebrew)
  21. brew install ceres-solver --HEAD

Build

  1. mkdir build
  2. cmake .. -DCMAKE_BUILD_TYPE=Release
  3. make -j8

Note that when torch must be imported before the pyDeform package in Python. i.e.,

  1. import torch
  2. import pyDeform

Download data

We already provide some demo shapes in the data folder. For playing with more shapes, try

  1. cd data
  2. wget -i filelist.txt

You will get 3625 pairs of shapes.

Run

We provide different binaries for shape deformation with different assumptions.

  1. rigid_deform.
    Deform well-connected and uniform triangle meshes A to general shape B so that regions in A are close to B.
  2. rigid_rot_deform.
    Similar to rigid_deform. Preserving edge length instead of 3D offset, which fits better but potentially more distortion.
  3. cad_deform.
    Deform a CAD model without preassumption of connectivity or uniformness, using rigid_deform.
  4. coverage_deform. (experimental)
    Deform A to B in order to cover most regions in B without distorting A too much.
  5. inverse_deform. (experimental)
    Deform A to B so that regions in B are close to A.

The way to run them is by

  1. ./rigid_deform ../data/source.obj ../data/target.obj output.obj [GRID_RESOLUTION=64] [MESH_RESOLUTION=5000] [lambda=1] [symmetry=0].
  2. ./cad_deform ../data/cad.obj ../data/target.obj output.obj [GRID_RESOLUTION=64] [MESH_RESOLUTION=5000] [lambda=1] [symmetry=0].

Run Pytorch optimizer

  1. cd build
  2. export PYTHONPATH=$PYTHONPATH:$(pwd)
  1. For watertight mesh deformation, try
    1. python ../src/python/rigid_deform.py --source ../data/source.obj --target ../data/target.obj --output ./rigid_output.obj
  2. For general CAD model deformation using traditional method
    1. python ../src/python/cad_deform2.py --source ../data/cad-source.obj --target ../data/cad-target.obj --output ./cad_output.obj --rigidity 1
  3. For NeuarlODE-based deformation, try
    1. python ../src/python/cad_neural_deform2.py --source ../data/cad-source.obj --target ../data/cad-target.obj --output ./cad_output.obj --save_path ./cad_output.ckpt --rigidity 0.1 --device cpu [cuda if possible for faster optimization]
  4. To generate intermediate steps during deformation with NeuralODE (assuming you have previous script done), try
    1. python ../src/python/cad_neural_animate.py --source ../data/cad-source.obj --target ../data/cad-target.obj --output_folder ./animation --rigidity 0.1 --resume_path ./cad_output.ckpt --device cpu [cuda if possible for faster optimization]

Author

© 2020 Jingwei Huang All Rights Reserved

IMPORTANT: If you use this code please cite the following (to provide) in any resulting publication:

  1. @article{huang2020meshode,
  2. title={MeshODE: A Robust and Scalable Framework for Mesh Deformation},
  3. author={Huang, Jingwei and Jiang, Chiyu Max and Leng, Baiqiang and Wang, Bin and Guibas, Leonidas},
  4. journal={arXiv preprint arXiv:2005.11617},
  5. year={2020}
  6. }