注册
登录
网络/光纤
>>
implementation-deep-learning
>>
返回
项目作者:
tyami
项目描述 :
Implementation of deep learning models
高级语言:
Jupyter Notebook
项目主页:
项目地址:
git://github.com/tyami/implementation-deep-learning.git
创建时间:
2018-03-14T08:49:17Z
项目社区:
https://github.com/tyami/implementation-deep-learning
开源协议:
下载
Implementation of Deep learning model
Study materials
How to: How to use markdown (for using github)
How to: Jump to Python (Korean)
How to: Jupyter Notebook
How to: Jupyter Notebook Shortcuts
How to: Matplotlib
[Tips: Python tips]
Fastcampus lecture notes by Gunho Choi
Deep Learning for beginners by Gunho Choi
Distill (visualizing)
라온피플 블로그 (Korean)
Hierarchy of deep learning milestones
1 Pytorch basics
Python basics
Pytorch basics
matplotlib
2 Neural Network (NN)
Perceptron
Activation functions (sigmoid, softmax, & ReLU)
Multi-Layer Perceptron
Backpropagation
Deep Neural Network
3 Basic concepts for NN modeling
Data Segmentation: Train/Validation/Test
Overfitting & Underfitting
Weight decay (Regularization)
Dropout
Input data transform
Learning rate decay
Convergence
Initialization
Batch Normalization
Optimization algorithm (Momentum, Nasterov, SGD, & Adam)
4 Datasets
Dataset: MNIST (10 classes, 28x28x1 handwriting images)
Dataset: ILSVRC (1,000 classes, 224x224x3 object images)
5 Convolutional Neural Network (CNN) series
Naive CNN
Convolution
Pooling
AlexNet
ZFNet
VGGNet
GoogLeNet
Inception module
Network In Network
ResNet
ResNet module
Bottleneck Architecture
DenseNet
ShuffleNet
Channel shuffle
Depthwise Seperable Convolution
Xception
MobileNet
MobileNetV2
6 Recurrent Neural Network (RNN) series
Naive RNN
Long Short-Term Memory (LSTM)
GRU
Dynamic RNN
Bidirectional RNN
7 Recurrent Convolutional Neural Network (RCNN) series
8 Autoencoder series
Restricted Boltzman Machine (RBM)
Deep Beilief Network (DBN)
Convolutional Autoencoder (CAE, CNN + Autoencoder)
Denoising Convolutional Autoencoder
Variational Autoencoder (VAE)
9 GAN
GAN, DCGAN 개념
Generative Adversarial Nets (GAN) 구현
DCGAN